143 research outputs found

    Physiological Organization of Layer 4 in Macaque Striate Cortex

    Get PDF
    Numerous highly angled electrode penetrations through the opercular region of macaque striate cortex reveal that layers 4A, 4Cα, and 4Cβ-the primary input sublaminae for axons from the lateral geniculate nucleus (LGN)-are retinotopically organized on a fine scale and populated mostly by monocularly driven cells having small receptive fields and lacking orientation selectivity. Layer 4B, which does not receive a direct thalamic input, contains orientationally selective cells, and many of these are also direction selective. To a significant degree the response properties of cells in layers 4Cα and 4Cβ reflect the response properties of their respective afferent inputs, from the magno- and parvocellular laminae of the LGN. Accordingly, cells in layer 4Cα have lower contrast thresholds and larger minimum response fields than do the cells in layer 4Cβ In contrast to this clear-cut separation, the cells of layer 4A (whose major source of direct LGN input arises from the parvocellular layers) exhibit both high and low contrast thresholds. With regard to the precision of retinotopic mapping that is seen in lamina 4C, it is noteworthy that there is substantial overlap among the minimum response fields of neighboring neurons. Due to a larger mean receptive field size, this overlap is greater in layer 4Cα than it is in 4Cβ. In either sublamina, however, the minimum cortical distance that separates different and nonoverlapping parts of the visual field corresponds closely-within a factor of 2-to the known arborizational spreads of single geniculate afferents

    Termination of Afferent Axons in Macaque Striate Cortex

    Get PDF
    We used horseradish peroxidase (HRP) to orthogradely label afferent axons in macaque striate cortex. Of the 38 axons that we recovered, nine were recorded intracellularly before being filled with HRP. Light microscope and computer reconstructions of filled processes reveal highly stereotyped patterns of arborization and suggest that there are at least five discrete populations of lateral geniculate nucleus (LGN) afferent axon: (1) those to layer 4Cβ, which have extremely circumscribed, dense terminal fields (small branches of which occasionally intrude into 4Cα) but which have not been shown to project to other laminae; (2) afferents to layer 4A, which in some cases send fine ascending collaterals into layer 2-3 and which do not, apparently, send collaterals to other laminae; (3) afferents to layer 1, which are fine, extend over large distances horizontally, and send collaterals to layer 6A; (4) afferents to the lower two-thirds of layer 4Cα, which have few or no collaterals in layer 6; and (5) afferents to the upper half of layer 4Cα, which have arborizing collaterals in layer 6B. Of the nine axons that were recorded intracellularly, those with projections to layer 4Cβ (two axons) and to layer 1 (one axon) had color-selective properties, whereas those (six axons) which arborized in 4Cα all had transient, broad band and highly contrast-sensitive receptive fields. These properties are consistent with derivations from somata in the parvocellular and magnocellular divisions of the LGN, respectively. Afferents to 4Cα were found to cover approximately 6 times as much surface area as afferents to 4Cβ. The preterminal trunks of all axons were found to follow tortuous paths through the neuropil-paths that may derive from axon segregation during development. The wide ranging, patchy distributions of single afferents in 4Cα suggest that individual 4Cα axons supply more than one ocular dominance stripe. In one case where the terminal arborization of a 4Cα axon was mapped against the transneuronally determined pattern of ocular dominance, three separate patches of terminal boutons were indeed found to coincide with the bands of one eye

    Understanding visual map formation through vortex dynamics of spin Hamiltonian models

    Full text link
    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spin-like Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.Comment: 4 pages, 15 figure

    Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages

    Get PDF
    Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms

    RNA-Sequencing Reveals the Progression of Phage-Host Interactions between phi R1-37 and Yersinia enterocolitica

    Get PDF
    Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_phi R1-37 (phi R1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of phi R1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.Peer reviewe

    A reevaluation of achromatic spatio-temporal vision: nonoriented filters are monocular, they adapt, and can be used for decision making at high flicker speeds

    Get PDF
    Masking, adaptation, and summation paradigms have been used to investigate the characteristics of early spatio-temporal vision. Each has been taken to provide evidence for (i) oriented and (ii) nonoriented spatial-filtering mechanisms. However, subsequent findings suggest that the evidence for nonoriented mechanisms has been misinterpreted: those experiments might have revealed the characteristics of suppression (eg, gain control), not excitation, or merely the isotropic subunits of the oriented detecting mechanisms. To shed light on this, we used all three paradigms to focus on the ‘high-speed’ corner of spatio-temporal vision (low spatial frequency, high temporal frequency), where cross-oriented achromatic effects are greatest. We used flickering Gabor patches as targets and a 2IFC procedure for monocular, binocular, and dichoptic stimulus presentations. To account for our results, we devised a simple model involving an isotropic monocular filter-stage feeding orientation-tuned binocular filters. Both filter stages are adaptable, and their outputs are available to the decision stage following nonlinear contrast transduction. However, the monocular isotropic filters (i) adapt only to high-speed stimuli—consistent with a magnocellular subcortical substrate—and (ii) benefit decision making only for high-speed stimuli (ie, isotropic monocular outputs are available only for high-speed stimuli). According to this model, the visual processes revealed by masking, adaptation, and summation are related but not identical

    Hyperbolic planforms in relation to visual edges and textures perception

    Get PDF
    We propose to use bifurcation theory and pattern formation as theoretical probes for various hypotheses about the neural organization of the brain. This allows us to make predictions about the kinds of patterns that should be observed in the activity of real brains through, e.g. optical imaging, and opens the door to the design of experiments to test these hypotheses. We study the specific problem of visual edges and textures perception and suggest that these features may be represented at the population level in the visual cortex as a specific second-order tensor, the structure tensor, perhaps within a hypercolumn. We then extend the classical ring model to this case and show that its natural framework is the non-Euclidean hyperbolic geometry. This brings in the beautiful structure of its group of isometries and certain of its subgroups which have a direct interpretation in terms of the organization of the neural populations that are assumed to encode the structure tensor. By studying the bifurcations of the solutions of the structure tensor equations, the analog of the classical Wilson and Cowan equations, under the assumption of invariance with respect to the action of these subgroups, we predict the appearance of characteristic patterns. These patterns can be described by what we call hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of the planforms that were used in [1, 2] to account for some visual hallucinations. If these patterns could be observed through brain imaging techniques they would reveal the built-in or acquired invariance of the neural organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table

    Self-organization and the selection of pinwheel density in visual cortical development

    Full text link
    Self-organization of neural circuitry is an appealing framework for understanding cortical development, yet its applicability remains unconfirmed. Models for the self-organization of neural circuits have been proposed, but experimentally testable predictions of these models have been less clear. The visual cortex contains a large number of topological point defects, called pinwheels, which are detectable in experiments and therefore in principle well suited for testing predictions of self-organization empirically. Here, we analytically calculate the density of pinwheels predicted by a pattern formation model of visual cortical development. An important factor controlling the density of pinwheels in this model appears to be the presence of non-local long-range interactions, a property which distinguishes cortical circuits from many nonliving systems in which self-organization has been studied. We show that in the limit where the range of these interactions is infinite, the average pinwheel density converges to π\pi. Moreover, an average pinwheel density close to this value is robustly selected even for intermediate interaction ranges, a regime arguably covering interaction-ranges in a wide range of different species. In conclusion, our paper provides the first direct theoretical demonstration and analysis of pinwheel density selection in models of cortical self-organization and suggests to quantitatively probe this type of prediction in future high-precision experiments.Comment: 22 pages, 3 figure

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
    corecore